Bayesian priors for tree calibration: Evaluating two new approaches based on fossil intervals
نویسندگان
چکیده
Background: Studies of diversification and trait evolution increasingly rely on combining molecular sequences and fossil dates to infer time-calibrated phylogenetic trees. Available calibration software provides many options for the shape of the prior probability distribution of ages at a node to be calibrated, but the question of how to assign a Bayesian prior from limited fossil data remains open. Results: We introduce two new methods for generating priors based upon (1) the interval between the two oldest fossils in a clade, i.e., the penultimate gap (PenG), and (2) the ghost lineage length (GLin), defined as the difference between the oldest fossils for each of two sister lineages. We show that PenG and GLin/2 are point estimates of the interval between the oldest fossil and the true age for the node. Furthermore, given either of these quantities, we derive a principled prior distribution for the true age. This prior is loglogistic, and can be implemented approximately in existing software. Using simulated data, we test these new methods against some other approaches. Conclusions: When implemented as approaches for assigning Bayesian priors, the PenG and GLin methods increase the accuracy of inferred divergence times, showing considerably more precision than the other methods tested, without significantly greater bias. When implemented as approaches to post-hoc scaling of a tree by linear regression, the PenG and GLin methods exhibit less bias than other methods tested. The new methods are simple to use and can be applied to a variety of studies that call for calibrated trees. . CC-BY 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/014340 doi: bioRxiv preprint first posted online Jan. 24, 2015;
منابع مشابه
Calibrated Birth–Death Phylogenetic Time-Tree Priors for Bayesian Inference
Here we introduce a general class of multiple calibration birth-death tree priors for use in Bayesian phylogenetic inference. All tree priors in this class separate ancestral node heights into a set of "calibrated nodes" and "uncalibrated nodes" such that the marginal distribution of the calibrated nodes is user-specified whereas the density ratio of the birth-death prior is retained for trees ...
متن کاملCalibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors
Calibration is the rate-determining step in every molecular clock analysis and, hence, considerable effort has been expended in the development of approaches to distinguish good from bad calibrations. These can be categorized into a priori evaluation of the intrinsic fossil evidence, and a posteriori evaluation of congruence through cross-validation. We contrasted these competing approaches and...
متن کاملIntegrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation.
The selection of fossil data to use as calibration age priors in molecular divergence time estimates inherently links neontological methods with paleontological theory. However, few neontological studies have taken into account the possibility of a taphonomic bias in the fossil record when developing approaches to fossil calibration selection. The Sppil-Rongis effect may bias the first appearan...
متن کاملCalibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation
The use of fossil evidence to calibrate divergence time estimation has a long history. More recently, Bayesian Markov chain Monte Carlo has become the dominant method of divergence time estimation, and fossil evidence has been reinterpreted as the specification of prior distributions on the divergence times of calibration nodes. These so-called "soft calibrations" have become widely used but th...
متن کاملCorrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents
Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusiv...
متن کامل